Abstract

Increased incidence of infections due to Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (KPC-Kp) was noted among patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) at a single hospital. An epidemiologic investigation identified KPC-Kp and non-KPC-producing, extended-spectrum β-lactamase (ESBL)-producing Kp in cultures from 2 endoscopes. Genotyping was performed on patient and endoscope isolates to characterize the microbial genomics of the outbreak. Genetic similarity of 51 Kp isolates from 37 patients and 3 endoscopes was assessed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Five patient and 2 endoscope isolates underwent whole genome sequencing (WGS). Two KPC-encoding plasmids were characterized by single molecule, real-time sequencing. Plasmid diversity was assessed by endonuclease digestion. Genomic and epidemiologic data were used in conjunction to investigate the outbreak source. Two clusters of Kp patient isolates were genetically related to endoscope isolates by PFGE. A subset of patient isolates were collected post-ERCP, suggesting ERCP endoscopes as a possible source. A phylogeny of 7 Kp genomes from patient and endoscope isolates supported ERCP as a potential source of transmission. Differences in gene content defined 5 ST258 subclades and identified 2 of the subclades as outbreak-associated. A novel KPC-encoding plasmid, pKp28 helped define and track one endoscope-associated ST258 subclade. WGS demonstrated high genetic relatedness of patient and ERCP endoscope isolates suggesting ERCP-associated transmission of ST258 KPC-Kp. Gene and plasmid content discriminated the outbreak from endemic ST258 populations and assisted with the molecular epidemiologic investigation of an extended KPC-Kp outbreak.

Highlights

  • Infections caused by carbapenemase-producing Klebsiella pneumoniae have recently emerged as a serious public health problem

  • pulsedfield gel electrophoresis (PFGE) of 43 Kp patient isolates identified 2 clusters with 84% band similarity to Kp isolates recovered from 2 endoscopic retrograde cholangiopancreatography (ERCP) endoscopes (Scopes A and C) and 1 endoscopic ultrasound (EUS) endoscope (Scope B) post high-level disinfection (Fig 2, Clusters A and B)

  • Taken together with the epidemiologic data, these results suggest that some sequence type 258 (ST258) subclade I isolates were potentially transmitted by ERCP procedures with Scope A

Read more

Summary

Introduction

Infections caused by carbapenemase-producing Klebsiella pneumoniae have recently emerged as a serious public health problem. A recent surveillance study from the United States demonstrated that 6.1% of K. pneumoniae had resistance to either imipenem or meropenem [1]. Resistance to carbapenems is often conferred by production of plasmid-encoded K. pneumoniae carbapenemase (KPC). Comparative whole genome sequence analyses have established ST258 as a hybrid clone that recently emerged through multiple recombination events [9,10]. These studies suggest that genetic recombination at specific regions of divergence or genetic “hotspots” may contribute to ST258 clonal success [9,10]. Whole genome and plasmid sequence analysis have demonstrated utility for outbreak detection and transmission tracking of ST258 [6,11,12,13]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.