Abstract
BackgroundDue to ethical reasons, surgical castration of young male piglets in their first week of life without anesthesia will be banned in Germany from 2021. Breeding against boar taint is already implemented in sire breeds of breeding organizations but in recent years a low demand made this trait economically less important.The objective of this study was to estimate heritabilities and genetic relationships between boar taint compounds androstenone and skatole and maternal/paternal reproduction traits in 4′924 Landrace (LR) and 4′299 Large White (LW) animals from nucleus populations. Additionally, genome wide association analysis (GWAS) was performed per trait and breed to detect SNP marker with possible pleiotropic effects that are associated with boar taint and fertility.ResultsEstimated heritabilities (h2) were 0.48 (±0.08) for LR (0.39 ± 0.07 for LW) for androstenone and 0.52 (±0.08) for LR (0.32 ± 0.07 for LW) for skatole. Heritabilities for reproduction did not differ between breeds except age at first insemination (LR: h2 = 0.27 (±0.05), LW: h2 = 0.34 (±0.05)). Estimates of genetic correlation (rg) between boar taint and fertility were different in LR and LW breeds. In LR an unfavorable rg of 0.31 (±0.15) was observed between androstenone and number of piglets born alive, whereas this rg in LW (− 0.15 (±0.16)) had an opposite sign. A similar breed-specific difference is observed between skatole and sperm count. Within LR, the rg of 0.08 (±0.13) indicates no relationship between the traits, whereas the rg of − 0.37 (±0.14) in LW points to an unfavorable relationship. In LR GWAS identified QTL regions on SSC5 (21.1–22.3 Mb) for androstenone and on SSC6 (5.5–7.5 Mb) and SSC14 (141.1–141.6 Mb) for skatole. For LW, one marker was found on SSC17 at 48.1 Mb for androstenone and one QTL on SSC14 between 140.5 Mb and 141.6 Mb for skatole.ConclusionKnowledge about such genetic correlations could help to balance conventional breeding programs with boar taint in maternal breeds. QTL regions with unfavorable pleiotropic effects on boar taint and fertility could have deleterious consequences in genomic selection programs. Constraining the weighting of these QTL in the genomic selection formulae may be a useful strategy to avoid physiological imbalances.
Highlights
Due to ethical reasons, surgical castration of young male piglets in their first week of life without anesthesia will be banned in Germany from 2021
This study aims to reveal these relationships as well as identify genes or Quantitative trait locus (QTL) with possible pleiotropic effects on boar taint and fertility
Genetic parameters between sperm volume (SV) and sperm measured by photometer (SP) estimated in our study indicate a distinct antagonistic genetic relationship, which is in accordance with observations in the Czech purebred pendants in the study of Wolf [44]
Summary
Surgical castration of young male piglets in their first week of life without anesthesia will be banned in Germany from 2021. The objective of this study was to estimate heritabilities and genetic relationships between boar taint compounds androstenone and skatole and maternal/paternal reproduction traits in 4′924 Landrace (LR) and 4′299 Large White (LW) animals from nucleus populations. The second one is skatole (3-methyindole) which results from the degradation of the amino acid tryptophan in the colon [3] Both compounds can be affected by genetics and environmental factors whereas skatole is more sensitive to housing conditions and nutritional management [4, 5]. Surgical castration without anesthesia is performed on young male piglets in their first week of life to prevent that odor, which represents a strong contrast to the increasing role of animal welfare in consumer acceptance. Due to a modification of the German animal protection law in 2013, castration without anesthesia should have been banned in Germany from 2019 but disagreement about alternatives lead to an extension of the deadline for the ban for two more years until 2021 [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.