Abstract

Retinoblastoma (pRb) is a multifunctional regulator, which was likely present in the last common ancestor of all eukaryotes. The Arabidopsis pRb homolog RETINOBLASTOMA RELATED 1 (RBR1), similar to its animal counterparts, controls not only cell proliferation but is also implicated in developmental decisions, stress responses and maintenance of genome integrity. Although most functions of pRb-type proteins involve chromatin association, a genome-wide understanding of RBR1 binding sites in Arabidopsis is still missing. Here, we present a plant chromatin immunoprecipitation protocol optimized for genome-wide studies of indirectly DNA-bound proteins like RBR1. Our analysis revealed binding of Arabidopsis RBR1 to approximately 1000 genes and roughly 500 transposable elements, preferentially MITES. The RBR1-decorated genes broadly overlap with previously identified targets of two major transcription factors controlling the cell cycle, i.e. E2F and MYB3R3 and represent a robust inventory of RBR1-targets in dividing cells. Consistently, enriched motifs in the RBR1-marked domains include sequences related to the E2F consensus site and the MSA-core element bound by MYB3R transcription factors. Following up a key role of RBR1 in DNA damage response, we performed a meta-analysis combining the information about the RBR1-binding sites with genome-wide expression studies under DNA stress. As a result, we present the identification and mutant characterization of three novel genes required for growth upon genotoxic stress.

Highlights

  • The first molecular function assigned to the human tumor suppressor Retinoblastoma was that of a transcriptional repressor controlling entry into S-phase

  • The Retinoblastoma tumor suppressor is a master regulator of the cell cycle and its inactivation is associated with many types of cancer

  • We describe here the first genome-wide DNA-binding study for a plant pRb protein, i.e. RETINOBLASTOMA RELATED 1 (RBR1), the only pRb homolog in Arabidopsis thaliana

Read more

Summary

Introduction

The first molecular function assigned to the human tumor suppressor Retinoblastoma (pRb) was that of a transcriptional repressor controlling entry into S-phase. It was shown that pRb binds and inhibits the function of E2F-DP transcription factors and that phosphorylation of pRb by CDK-cyclin complexes disrupts this interaction, releasing E2F-controlled genes from repression [1]. A wealth of additional functions in cell proliferation, differentiation, environmental response and genome stability have been discovered for the family of pRb related proteins in various organisms [2,3,4,5]. More than 200 interactors of human pRb are listed in the BioGRID database [6], reflecting the multi-functionality of this molecular hub. In the model plant Arabidopsis thaliana, there is only one homolog, termed RBR1 (RETINOBLASTOMA RELATED 1) and its loss is female gametophytic lethal [11]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.