Abstract

Background: The fundamental process of protein secretion from eukaryotic cells has been well described for many years, yet gaps in our understanding of how this process is regulated remain. Methods: With the aim of identifying novel genes involved in the secretion of glycoproteins, we used a screening pipeline consisting of a pooled genome-wide CRISPR screen, followed by secondary siRNA screening of the hits to identify and validate several novel regulators of protein secretion. Results: We present approximately 50 novel genes not previously associated with protein secretion, many of which also had an effect on the structure of the Golgi apparatus. We further studied a small selection of hits to investigate their subcellular localisation. One of these, GPR161, is a novel Golgi-resident protein that we propose maintains Golgi structure via an interaction with golgin A5. Conclusions: This study has identified new factors for protein secretion involved in Golgi homeostasis.

Highlights

  • The fundamental process of protein secretion from eukaryotic cells has been well described for many years, yet gaps in our understanding of how this process is regulated remain

  • A genome-wide CRISPR screen revealed novel regulators of glycoprotein secretion We carried out a genome-wide CRISPR screen with the aim of identifying novel genes involved in glycoprotein secretion, using the level of galectin-3 on the surface of live cells to look at glycoprotein secretion via the endoplasmic reticulum (ER)-Golgi pathway

  • Here we identified novel genes involved in glycoprotein secretion using a combination of pooled CRISPR screening and siRNA screening

Read more

Summary

Introduction

The fundamental process of protein secretion from eukaryotic cells has been well described for many years, yet gaps in our understanding of how this process is regulated remain. Methods: With the aim of identifying novel genes involved in the secretion of glycoproteins, we used a screening pipeline consisting of a pooled genome-wide CRISPR screen, followed by secondary siRNA screening of the hits to identify and validate several novel regulators of protein secretion. Results: We present approximately 50 novel genes not previously associated with protein secretion, many of which had an effect on the structure of the Golgi apparatus. GPR161, is a novel Golgi-resident protein that we propose maintains Golgi structure via an interaction with golgin A5. Conclusions: This study has identified new factors for protein secretion involved in Golgi homeostasis

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.