Abstract

Proline-rich extensin-like receptor kinases (PERKs) are a class of receptor kinases implicated in multiple cellular processes in plants. However, there is a lack of information on the PERK gene family in wheat. Therefore, we identified 37 PERK genes in wheat to understand their role in various developmental processes and stress conditions. Phylogenetic analysis of PERK genes from Arabidopsis thaliana, Oryza sativa, Glycine max, and T. aestivum grouped them into eight well-defined classes. Furthermore, synteny analysis revealed 275 orthologous gene pairs in B. distachyon, Ae. tauschii, T. dicoccoides, O. sativa and A. thaliana. Ka/Ks values showed that most TaPERK genes, except TaPERK1, TaPERK2, TaPERK17, and TaPERK26, underwent strong purifying selection during evolutionary processes. Several cis-acting regulatory elements, essential for plant growth and development and the response to light, phytohormones, and diverse biotic and abiotic stresses, were predicted in the promoter regions of TaPERK genes. In addition, the expression profile of the TaPERK gene family revealed differential expression of TaPERK genes in various tissues and developmental stages. Furthermore, TaPERK gene expression was induced by various biotic and abiotic stresses. The RT-qPCR analysis also revealed similar results with slight variation. Therefore, this study’s outcome provides valuable information for elucidating the precise functions of TaPERK in developmental processes and diverse stress conditions in wheat.

Highlights

  • Protein phosphorylation is a key post-translational modification that regulates cell signaling networks and cellular processes in response to internal and external environmental stimulation through the reversible regulation of protein function by activation or deactivation, formation of protein complexes, and determination of the subcellular location of proteins [1,2,3]

  • To explore why the wheat was polyploidy with the largest genome, we further investigated the duplication events in the TaPERK gene family

  • TaPERK18 and TaPERK24 showed higher expression at the stem z30 stage, whereas TaPERK24, TaPERK30, and TaPERK31 expression was raised at the stem z65 stage (Figure 8). These results showed that the TaPERK gene family members might be involved in developing different tissues and stages

Read more

Summary

Introduction

Protein phosphorylation is a key post-translational modification that regulates cell signaling networks and cellular processes in response to internal and external environmental stimulation through the reversible regulation of protein function by activation or deactivation, formation of protein complexes, and determination of the subcellular location of proteins [1,2,3]. Receptor kinases are the most prominent gene family in crop species, including Arabidopsis, rice, maize, soybean, cotton, and sorghum [6,7,8]. The Arabidopsis receptor kinase gene family encompasses ~610 members, and their homologs have been identified and characterized in many plant species [7,9,10,11]. Receptor kinases play a crucial roles in cell differentiation, pollen tube growth, pollen development, symbiosis, pathogen recognition, phytohormone response, signal transduction, self-incompatibility and response towards internal and external stimuli [8,9,12,13,14,15,16]. A few studies have identified and characterized the ligands that activate specific receptor kinases, as well as some signaling components [8,13]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.