Abstract

BackgroundAlteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. There are genomes available of the species Alteromonas macleodii from different locations around the world and an Alteromonas sp. isolated from a sediment in Korea. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea.ResultsAlthough these two strains belong to a clearly different species from A. macleodii, the overall synteny is well preserved and the flexible genomic islands seem to code for equivalent functions and be located at similar positions. Actually the genomes of all the Alteromonas species known to date seem to preserve synteny quite well with the only exception of the sediment isolate SN2. Among the specific metabolic features found for the A. australica isolates there is the degradation of xylan and production of cellulose as extracellular polymeric substance by DE170 or the potential ethanol/methanol degradation by H17T.ConclusionsThe genomes of the two A. australica isolates are not more different than those of strains of A. macleodii isolated from the same sample. Actually the recruitment from metagenomes indicates that all the available genomes are found in most tropical-temperate marine samples analyzed and that they live in consortia of several species and multiple clones within each. Overall the hydrolytic activities of the Alteromonas genus as a whole are impressive and fit with its known capabilities to exploit sudden inputs of organic matter in their environment.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-483) contains supplementary material, which is available to authorized users.

Highlights

  • Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory

  • We have assembled into a single contig the genome of the two isolates, A. australica H17T [10] isolated from the Tasman Sea and A. australica DE170 from the South Adriatic (16000 km away)

  • The pairwise genome comparison of the A. australica isolates with all available strain genomes of the Alteromonas genus gave an average nucleotide identity (ANI) value of ca. 74% (Table 1)

Read more

Summary

Introduction

Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea. The genus Alteromonas contains species of marine bacteria that have been isolated often from the oceans around the world [1,2]. The type species Alteromonas macleodii is found worldwide but mostly at temperate or tropical latitudes due to its mesophilic nature (grows between 10 and 45°C) (López-Pérez and Rodriguez-Valera, in press). This microbe was shown to be enriched in the particulate fraction of the water column in off-shore Mediterranean waters [3,4].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.