Abstract

Simple SummaryBoer goat is a world-famous meat-type goat breed that underwent long-term artificial selection from African indigenous animals. The current study displayed the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian Boer (AS), to investigate the hereditary basis of artificial selection in different stages. Moreover, the θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection in Boer goats. Ten genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were identified and are potentially responsible for reproduction, metabolism, growth, and development. This study provided a comprehensive overview of genomic variations in Boer goat, which may provide a basis for further resource protection and improvement of this breed.Boer goats, as kemp in meat-type goats, are selected and bred from African indigenous goats under a long period of artificial selection. Their advantages in multiple economic traits, particularly their plump growth, have attracted worldwide attention. The current study displayed the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian Boer (AS) to investigate the hereditary basis of artificial selection in different stages. Four methods (principal component analysis, nucleotide diversity, linkage disequilibrium decay, and neighbor-joining tree) implied the genomic diversity changes with different artificial selection intensities in Boer goats. In addition, the θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection in Boer goats. Consequently, 339 (BH vs. AF) and 295 (AS vs. BH) candidate genes were obtained from SNP data. Especially, 10 genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were identified. Functional annotation analysis revealed that these genes are potentially responsible for reproduction, metabolism, growth, and development. This study used genome-wide sequencing data to identify inheritance by artificial selection. The results of the current study are valuable for future molecular-assisted breeding and genetic improvement of goats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.