Abstract

Self-transcribing active regulatory region sequencing (STARR-seq) is widely used to identify enhancers at the whole-genome level. However, whether STARR-seq works as efficiently in plants as in animal systems remains unclear. Here, we determined that the traditional STARR-seq method can be directly applied to rice (Oryza sativa) protoplasts to identify enhancers, though with limited efficiency. Intriguingly, we identified not only enhancers but also constitutive promoters with this technique. To increase the performance of STARR-seq in plants, we optimized two procedures. We coupled fluorescence activating cell sorting (FACS) with STARR-seq to alleviate the effect of background noise, and we minimized PCR cycles and retained duplicates during prediction, which significantly increased the positive rate for activating regulatory elements (AREs). Using this method, we determined that AREs are associated with AT-rich regions and are enriched for a motif that the AP2/ERF family can recognize. Based on GC content preferences, AREs are clustered into two groups corresponding to promoters and enhancers. Either AT- or GC-rich regions within AREs could boost transcription. Additionally, disruption of AREs resulted in abnormal expression of both proximal and distal genes, which suggests that STARR-seq-revealed elements function as enhancers invivo. In summary, our work provides a promising method to identify AREs in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.