Abstract

BackgroundHistone modifications play an integral role in plant development, but have been poorly studied in woody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood formation) and identify novel functional regions in plant genomes. However, woody tissue poses unique challenges for using high-throughput chromatin immunoprecipitation (ChIP) techniques for studying genome-wide histone modifications in vivo. We investigated the role of the modified histone H3K4me3 (trimethylated lysine 4 of histone H3) in gene expression during the early stages of wood formation using ChIP-seq in Eucalyptus grandis, a woody biomass model.ResultsPlant chromatin fixation and isolation protocols were optimized for developing xylem tissue collected from field-grown E. grandis trees. A “nano-ChIP-seq” procedure was employed for ChIP DNA amplification. Over 9 million H3K4me3 ChIP-seq and 18 million control paired-end reads were mapped to the E. grandis reference genome for peak-calling using Model-based Analysis of ChIP-Seq. The 12,177 significant H3K4me3 peaks identified covered ~1.5% of the genome and overlapped some 9,623 protein-coding genes and 38 noncoding RNAs. H3K4me3 library coverage, peaking ~600 - 700 bp downstream of the transcription start site, was highly correlated with gene expression levels measured with RNA-seq. Overall, H3K4me3-enriched genes tended to be less tissue-specific than unenriched genes and were overrepresented for general cellular metabolism and development gene ontology terms. Relative expression of H3K4me3-enriched genes in developing secondary xylem was higher than unenriched genes, however, and highly expressed secondary cell wall-related genes were enriched for H3K4me3 as validated using ChIP-qPCR.ConclusionsIn this first genome-wide analysis of a modified histone in a woody tissue, we optimized a ChIP-seq procedure suitable for field-collected samples. In developing E. grandis xylem, H3K4me3 enrichment is an indicator of active transcription, consistent with its known role in sustaining pre-initiation complex formation in yeast. The H3K4me3 ChIP-seq data from this study paves the way to understanding the chromatin landscape and epigenomic architecture of xylogenesis in plants, and complements RNA-seq evidence of gene expression for the future improvement of the E. grandis genome annotation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0499-0) contains supplementary material, which is available to authorized users.

Highlights

  • Histone modifications play an integral role in plant development, but have been poorly studied in woody plants

  • Antibody recognition of the H3Kme3 protein in Eucalyptus developing secondary xylem (DSX) was confirmed by Western blot analysis of DSX nuclear extracts, where the antibody recognized a ~17 kDa band corresponding to the predicted molecular weight of Lysine 4-trimethylated histone H3 (H3K4me3) (Additional file 2: Figure S5a)

  • We investigated the relationship between H3K4me3 modification of genes and their RNA-seq expression values in DSX tissue collected from a different trial [56]

Read more

Summary

Introduction

Histone modifications play an integral role in plant development, but have been poorly studied in woody plants. Investigating chromatin organization in wood-forming tissue and its role in regulating gene expression allows us to understand the mechanisms underlying cellular differentiation during xylogenesis (wood formation) and identify novel functional regions in plant genomes. We investigated the role of the modified histone H3K4me (trimethylated lysine 4 of histone H3) in gene expression during the early stages of wood formation using ChIP-seq in Eucalyptus grandis, a woody biomass model. A rich diversity of histone modifications affect chromatin structure and/or gene activation and repression in eukaryotes reviewed by [1,2]. SET1 associates with the activated form of Pol II, in part through the PAF1 complex, ensuring that H2B ubiquitination and H3K4 methylation occur proximal to the pre-initiation complex reviewed by [19]. A number of other proteins are known to bind to H3K4me at specific loci, which are in turn tethered to, or recruit, enzymes that manipulate the local chromatin structure [2]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.