Abstract

Primary open-angle glaucoma (POAG) is the most common form of glaucoma and one of the leading causes of vision loss worldwide. The genetic etiology of POAG is complex and poorly understood. The purpose of this work is to identify genomic regions of interest linked to POAG. This study is the largest genetic linkage study of POAG performed to date: genomic DNA samples from 786 subjects (538 Caucasian ancestry, 248 African ancestry) were genotyped using either the Illumina GoldenGate Linkage 4 Panel or the Illumina Infinium Human Linkage-12 Panel. A total of 5233 SNPs was analyzed in 134 multiplex POAG families (89 Caucasian ancestry, 45 African ancestry). Parametric and non-parametric linkage analyses were performed on the overall dataset and within race-specific datasets (Caucasian ancestry and African ancestry). Ordered subset analysis was used to stratify the data on the basis of age of glaucoma diagnosis. Novel linkage regions were identified on chromosomes 1 and 20, and two previously described loci—GLC1D on chromosome 8 and GLC1I on chromosome 15—were replicated. These data will prove valuable in the context of interpreting results from genome-wide association studies for POAG.

Highlights

  • Glaucoma comprises a group of disorders that are characterized by retinal ganglion cell death and a characteristic pattern of progressive vision loss

  • Primary open-angle glaucoma (POAG) is the most common type of glaucoma globally [1], and it is estimated that by 2020 the number of people diagnosed with POAG in the United States alone will total more than 3 million [2]

  • Causative mutations have been identified in genes within three of these loci: Myocilin (MYOC) on 1q24.3 (GLC1A) [12], optineurin (OPTN) on 10p15-14 (GLC1E) [8], and WD40repeat 36 on 5q22.1 (GLC1G) [6]

Read more

Summary

Introduction

Glaucoma comprises a group of disorders that are characterized by retinal ganglion cell death and a characteristic pattern of progressive vision loss. Causative mutations have been identified in genes within three of these loci: Myocilin (MYOC) on 1q24.3 (GLC1A) [12], optineurin (OPTN) on 10p15-14 (GLC1E) [8], and WD40repeat 36 on 5q22.1 (GLC1G) [6]. Together, mutations in these three genes account for less than 10% of POAG cases [19]. The majority of the genetic etiology of POAG remains to be discovered

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.