Abstract
Ca2+ serves as a ubiquitous second messenger regulating several aspects of plant growth and development. A group of unique calcium sensor proteins, calcineurin B-like (CBL), interact with CBL-interacting protein kinases (CIPKs) to decode the Ca2+ signature inside the cell. Although CBL-CIPK signaling toolkit has been shown to play significant roles in the responses to numerous stresses in different plants, the information about pineapple CBL-CIPK remains obscure. In the present study, a total of eight AcCBL and 21 AcCIPK genes were identified genome-wide in pineapple. The identified genes were renamed on the basis of gene ID in ascending order and phylogenetic analysis divided into five groups. Transcriptomic data analysis showed that AcCBL and AcCIPK genes were expressed differentially in different tissues. Further, the expression analysis of AcCBL1 in different tissues showed significant changes under various abiotic stimuli. Additionally, the ectopic expression of AcCBL1 in Arabidopsis resulted in enhanced tolerance to salinity, osmotic, and fungal stress. The present study revealed the crucial contribution of the CBL-CIPK gene in various biological and physiological processes in pineapple.
Highlights
In living organisms, the precise perception and timely decoding of environmental and developmental signals are essential for survival
A total of 8 calcineurin B-like (CBL) and 26 CBL-interacting protein kinases (CIPKs) genes were initially obtained from the pineapple genome using
Among 8 identified CBLs, AcCBL6 was the smallest having 193 amino acid and AcCBL4 was largest with 359 amino acid, whereas AcCIPK8 was smallest with 382 amino acids and AcCIPK20 with 506 amino acid was largest in the group
Summary
The precise perception and timely decoding of environmental and developmental signals are essential for survival. The signal transduction pathway involved in this process includes several indispensable components including calcium (Ca2+ ), which serves as a ubiquitous second messenger in all eukaryotes [1,2,3]. Various organelles such as endoplasmic reticulum (ER), mitochondria, and vacuoles work as Ca2+ store and help in the maintenance of a critical balance of Ca2+ inside the cell [4]. The elevated Ca2+ level inside the cell is recognized by several calcium-binding proteins or calcium sensors [5]. A number of calcium sensors have been reported in plants including calmodulin (CaM), calcineurin B-like (CBLs), and calcium-dependent protein kinases (CDPKs) [15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.