Abstract

Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops.

Highlights

  • Ribosomal proteins (RPs) constitute the protein part of the ribosomes and have a significant role in ribosome biogenesis, protein synthesis, cell growth, development, and apoptosis (Ramakrishnan and White, 1998; Naora and Naora, 1999; Maguire and Zimmermann, 2001; Wang Z. et al, 2013)

  • Based upon the OrygeneDB output, the Ribosomal Protein Small Subunit (RPS) genes were found to be distributed throughout the rice genome covering all 12 chromosomes

  • Most of the genes are located on chromosomes 3, 1, 7, and 11, with chromosome 3 bearing the highest number of eleven RPS genes

Read more

Summary

Introduction

Ribosomal proteins (RPs) constitute the protein part of the ribosomes and have a significant role in ribosome biogenesis, protein synthesis, cell growth, development, and apoptosis (Ramakrishnan and White, 1998; Naora and Naora, 1999; Maguire and Zimmermann, 2001; Wang Z. et al, 2013). RPs have long been known primarily for their housekeeping functions. The knockdown of individual RPs leads to P53 accumulation, cell death and certain developmental abnormalities in Zebra fish (Uechi et al, 2006; Danilova et al, 2008). Mutations in certain RPs were associated with Diamond-Blackfan Anemia (DBA) and increased risk of cancer (Gazda et al, 2008). Specific RPs have been used as therapeutic targets in cancer treatment. Overexpression of RPS2 has been linked with the survival of prostate tumors, whereas suppression of RPS2 or RPS3a resulted in apoptosis (Wang et al, 2009)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.