Abstract

Skin trait variation impacts quality-of-life, especially for females from the viewpoint of beauty. To investigate genetic variation related to these traits, we conducted a GWAS of various skin phenotypes in 11,311 Japanese women and identified associations for age-spots, freckles, double eyelids, straight/curly hair, eyebrow thickness, hairiness, and sweating. In silico annotation with RoadMap Epigenomics epigenetic state maps and colocalization analysis of GWAS and GTEx Project eQTL signals provided information about tissue specificity, candidate causal variants, and functional target genes. Novel signals for skin-spot traits neighboured AKAP1/MSI2 (rs17833789; P = 2.2 × 10−9), BNC2 (rs10810635; P = 2.1 × 10−22), HSPA12A (rs12259842; P = 7.1 × 10−11), PPARGC1B (rs251468; P = 1.3 × 10−21), and RAB11FIP2 (rs10444039; P = 5.6 × 10−21). HSPA12A SNPs were the only protein-coding gene eQTLs identified across skin-spot loci. Double edged eyelid analysis identified that a signal around EMX2 (rs12570134; P = 8.2 × 10−15) was also associated with expression of EMX2 and the antisense-RNA gene EMX2OS in brain putamen basal ganglia tissue. A known hair morphology signal in EDAR was associated with both eyebrow thickness (rs3827760; P = 1.7 × 10−9) and straight/curly hair (rs260643; P = 1.6 × 10−103). Excessive hairiness signals’ top SNPs were also eQTLs for TBX15 (rs984225; P = 1.6 × 10−8), BCL2 (rs7226979; P = 7.3 × 10−11), and GCC2 and LIMS1 (rs6542772; P = 2.2 × 10−9). For excessive sweating, top variants in two signals in chr2:28.82-29.05 Mb (rs56089836; P = 1.7 × 10−11) were eQTLs for either PPP1CB or PLB1, while a top chr16:48.26–48.45 Mb locus SNP was a known ABCC11 missense variant (rs6500380; P = 6.8 × 10−10). In total, we identified twelve loci containing sixteen association signals, of which fifteen were novel. These findings will help dermatologic researchers better understand the genetic underpinnings of skin-related phenotypic variation in human populations.

Highlights

  • Curly hair, eyebrow thickness, hairiness, and sweating

  • The data was collected in two study-stages, termed LL01 and LL02 (LL01 = 5750, LL02 = 5628), with a detailed description of the dataset and methods used for genotyping, imputation, and annotation available in a recently published genome-wide association studies (GWAS) report of self-reported food reactions that used the same set of samples[17]

  • For skin-spot phenotypes, we found four novel loci encompassing the PPARGC1B, RAB11FIP2, HSPA12A, and A-kinase anchoring protein 1 (AKAP1)/musashi RNA binding protein 2 (MSI2) genes, along with a novel East Asian signal in the known basonuclin 2 gene (BNC2) gene locus

Read more

Summary

Introduction

Curly hair, eyebrow thickness, hairiness, and sweating. In silico annotation with RoadMap Epigenomics epigenetic state maps and colocalization analysis of GWAS and GTEx Project eQTL signals provided information about tissue specificity, candidate causal variants, and functional target genes. We identified twelve loci containing sixteen association signals, of which fifteen were novel These findings will help dermatologic researchers better understand the genetic underpinnings of skin-related phenotypic variation in human populations. Skin phenotypes such as freckles, hairiness, and excessive sweating can be serious problems for some individuals. Use of epigenetic state data combined with colocalization analysis of GWAS and eQTL signals allowed us to narrow down the lists of candidate causal variants, identify likely target genes, and better understand the biologic functions of a number of genes with important effects that were detected in this study

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.