Abstract

Cyclins play important roles in cell division and cell expansion. They also interact with cyclin-dependent kinases to control cell cycle progression in plants. Our genome-wide analysis identified 52 expressed cyclin genes in tomato. Phylogenetic analysis of the deduced amino sequences of tomato and Arabidopsis cyclin genes divided them into 10 types, A-, B-, C-, D-, H-, L-, T-, U-, SDS- and J18. Pfam analysis indicated that most tomato cyclins contain a cyclin-N domain. C-, H- and J18 types only contain a cyclin-C domain, and U-type cyclins contain another potential cyclin domain. All of the cyclin genes are distributed throughout the tomato genome except for chromosome 8, and 30 of them were found to be segmentally duplicated; they are found on the duplicate segments of chromosome 1, 2, 3, 4, 5, 6, 10, 11 and 12, suggesting that tomato cyclin genes experienced a mass of segmental duplication. Quantitative real-time polymerase chain reaction analysis indicates that the expression patterns of tomato cyclin genes were significantly different in vegetative and reproductive stages. Transcription of most cyclin genes can be enhanced or repressed by exogenous application of gibberellin, which implies that gibberellin maybe a direct regulator of cyclin genes. The study presented here may be useful as a guide for further functional research on tomato cyclins.

Highlights

  • Cell cycle regulation is of pivotal importance for plant growth and development

  • Tissue-specific and gibberellic acid (GA) responsive expression patterns were examined through quantitative real-time polymerase chain reaction analysis method. These results present a solid foundation for future cloning and functional analysis of tomato cyclin genes

  • To identify cyclin genes in the tomato genome, keyword searches and sequence alignment were performed against SOL Genomics Network (SGN), NCBI, DFCI and other public databases

Read more

Summary

Introduction

Cell cycle regulation is of pivotal importance for plant growth and development. Cell cycle progression is primarily driven by a family of cyclin-dependent kinases (CDKs) in plants. There are 49 cyclins in Arabidopsis, which can be divided into types on the basis of function and sequence analysis, including A- to D-type, H-, L-, T-, U-, SDS-, and J18-type [3]. F-type cyclins were reported in rice and suggested to be monocotyledon plant specific [4]. Q- and Z-types were reported in poplar and defined as new putative cyclin types [7]. According to their expression phase in the cell cycle, cyclins can be divided into two types, M- and G1-cyclins. M-cyclins, including the A- and B-cyclins, help to drive cells into M-phase

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.