Abstract

Phenyllactate (PLA) is found in a variety of fermented foods and is a promising antibacterial agent, drug and plastic synthetic precursor. Previous studies have shown that PLA is a product of Phe catabolism in lactic acid bacteria (LAB), and PLA biosynthesis is mainly related to lactate dehydrogenases (LDHs). Here, the genome, transcriptome and fermentation characteristics of PLA-producing Lactobacillus plantarum LY-78 were studied. The fermentation experiments demonstrated that L. plantarum LY-78 possesses the ability to synthesize PLA de novo. Secondly, the genome and transcriptome analyses revealed candidate pathways, operons and key genes for PLA biosynthesis in the strain. Finally, genome-wide transcriptome analysis revealed significant changes in the expression profile of strain LY-78 in the absence and presence of PPA. Overall, this work demonstrates for the first time that PLA can be a by-product of Phe anabolism in LAB, provides new insights and evidence for elucidating the mechanism of PLA biosynthesis in LAB, and may provide new candidate genes and research strategies for future PLA biosynthesis applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.