Abstract

Induced pluripotent stem cell (iPSC) technology has emerged as the most promising method for generating patient-specific human embryonic stem (ES) cells and adult stem cells (Takahashi et al., 2007, Cell 131:861-872; Wernig et al., 2007, Nature 448:318-324; Park et al., 2008, Nature 451:141-146). So far, most studies of direct reprogramming have been done by using lentiviruses/retroviruses encoding the reprogramming factors. This represents a major limitation to therapeutic applications since viral integration in the host genome increases the risk of tumorigenicity, and low-level residual expression of reprogramming factors may alter the differentiation potential of the human iPSCs (hiPSCs). As a result, more attention has been paid to developing new techniques to manipulate the human genome, with the goal of making safer hiPSCs that have fewer or no lesions or alterations in the genome. Additionally, the efficiency of reprogramming and of homologous recombination in gene therapy must be improved, if iPSC technology is to be a viable tool in regenerative medicine. Here, we summarize the recent developments in human genome manipulation for generating hiPSCs and advances in homologous recombination for gene targeting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.