Abstract

The RNA-guided, sequence-specific endonuclease Cas9 has been widely adopted as genome engineering tool due to its efficiency and ease of use. Derived from the microbial CRISPR (clustered regularly interspaced short palindromic repeat) type II adaptive immune system, Cas9 has now been successfully engineered for genome editing applications in a variety of animal and plant species. To reduce potential off-target mutagenesis by wild-type Cas9, homology- and structure-guided mutagenesis of Streptococcus pyogenes Cas9 catalytic domains has produced "nicking" enzymes (Cas9n) capable of inducing single-strand nicks rather than double-strand breaks. Since nicks are generally repaired with high fidelity in eukaryotic cells, Cas9n can be leveraged to mediate highly specific genome editing, either via nonhomologous end-joining or homology-directed repair. Here we describe the preparation, testing, and application of Cas9n reagents for precision mammalian genome engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.