Abstract

The tools for genome engineering have become very powerful and accessible over the last several years. CRISPR/Cas nucleases, TALENs and ZFNs can all be designed to produce highly specific double-strand breaks in chromosomal DNA. These breaks are processed by cellular DNA repair machinery leading to localized mutations and to intentional sequence replacements. Because these repair processes are common to essentially all organisms, the targetable nucleases have been applied successfully to a wide range of animals, plants, and cultured cells. In each case, the mode of delivery of the nuclease, the efficiency of cleavage and the repair outcome depend on the biology of the particular system being addressed. These reagents are being used to introduce favorable characteristics into organisms of economic significance, and the prospects for enhancing human gene therapy appear very bright.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.