Abstract

Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular responses to perturbations such as therapeutic interventions and vaccines. Gene relevance to such perturbations is often assessed through differential expression analysis (DEA), which offers a one-dimensional view of the transcriptomic landscape. This method potentially overlooks genes with modest expression changes but profound downstream effects and is susceptible to false positives. We present GENIX (gene expression network importance examination), a computational framework that transcends DEA by constructing gene association networks and employing a network-based comparative model to identify topological signature genes. We benchmark GENIX using both synthetic and experimental datasets, including analysis of influenza vaccine-induced immune responses in peripheral blood mononuclear cells (PBMCs) from recovered COVID-19 patients. GENIX successfully emulates key characteristics of biological networks and reveals signature genes that are missed by classical DEA, thereby broadening the scope of target gene discovery in precision medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.