Abstract

Classical genetic approaches useful with free-living bacteria are difficult to apply to the rickettsiae. Although rickettsial mutants have been isolated over the years, the genetic basis of these mutants is unknown, limiting their usefulness. The application of molecular biological techniques to rickettsial studies has provided the opportunity to isolate and study specific genes. Genes encoding metabolic enzymes from rickettsiae were cloned in Escherichia coli and shown to retain their regulatory properties, suggesting that recombinant DNA technology may be useful for studies of rickettsial enzymes and regulatory mechanisms. The potential use of rickettsial surface components, or virulence factors as possible antigens for protective subunit vaccines, has led to the cloning and expression in E. coli, of rickettsial chromosomal and plasmid genes encoding outer membrane proteins. The number of genes characterized in recent years has increased dramatically giving rise to an increasing source of information on rickettsial gene structure. Plasmids have only been identified in C. burnetii and possibly Rochalimaea quintana. The plasmid sequences present in C. burnetii are highly conserved suggesting that they are important to the growth and virulence of this organism. To understand the role of genes in the rickettsia-host relationship, it is critical that a genetic exchange system be developed. The recent description of transformation of R. quintana by electroporation is an important first step in this direction. The ability to introduce genetic material is necessary to address questions that cannot be resolved by studying rickettsial gene expression in E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.