Abstract

The spirochetes in the Borrelia burgdorferi sensu lato genospecies group cycle in nature between tick vectors and vertebrate hosts. The current assemblage of B. burgdorferi sensu lato, of which three species cause Lyme disease in humans, originated from a rapid species radiation that occurred near the origin of the clade. All of these species share a unique genome structure that is highly segmented and predominantly composed of linear replicons. One of the circular plasmids is a prophage that exists as several isoforms in each cell and can be transduced to other cells, likely contributing to an otherwise relatively anemic level of horizontal gene transfer, which nevertheless appears to be adequate to permit strong natural selection and adaptation in populations of B. burgdorferi. Although the molecular genetic toolbox is meager, several antibiotic-resistant mutants have been isolated, and the resistance alleles, as well as some exogenous genes, have been fashioned into markers to dissect gene function. Genetic studies have probed the role of the outer membrane lipoprotein OspC, which is maintained in nature by multiple niche polymorphisms and negative frequency-dependent selection. One of the most intriguing genetic systems in B. burgdorferi is vls recombination, which generates antigenic variation during infection of mammalian hosts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.