Abstract

We have compared the random-amplified-polymorphic DNA (RAPD) patterns of Symbiodinium isolates from seven species of giant clams to investigate the large genetic variation that we previously reported for this group of dinoflagellate symbionts using allozyme analysis. Comparisons of 163 RAPD characters by unweighted pair-group arithmetic-average cluster analysis (UPGMA) corroborate our previous findings that giant clams associate with a large number of genetically distinguishable algal symbionts, and that the isolates from a single Tridacna gigas individual form a group of closely related algae. However, the overall topology of the UPGMA tree constructed from RAPD data differs from that of the previous allozyme data, indicating that the combined data we have collected to date are insufficient to accurately infer phylogenetic affiliations between the isolates studied. Comparisons of our data set with those published for strains of Gymnodinium catenatum, a toxic dinoflagellate with a sexual life stage, shows that our isolates are even more diverse. Algal isolates from giant clams have a level of RAPD variation comparable to organisms that are able to undergo sexual recombination. This study demonstrates the sensitivity of the RAPD technique in detecting genetic diversity in this group of algae, and highlights the need for more comparative data for the major clades of Symbiodinium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.