Abstract

Higher rates of diseases transmitted from insects to humans led to the increased use of organophosphate insecticides, proven to be harmful to human health and the environment. New, more effective chemical formulations with minimum genetic toxicity effects have become the object of intense research. These formulations include larvicides derived from plant extracts such as dillapiol, a phenylpropanoid extracted from Piper aduncum, and from microorganisms such as spinosad, formed by spinosyns A and D derived from the Saccharopolyspora spinosa fermentation process. This study investigated the genotoxicity of dillapiol and spinosad, characterising and quantifying mutation events and chromosomal and/or mitotic recombination using the somatic mutation and recombination test (SMART) in wings of Drosophila melanogaster. Standard cross larvae (72 days old) were treated with different dillapiol and spinosad concentrations. Both compounds presented positive genetic toxicity, mainly as mitotic recombination events. Distilled water and doxorubicin were used as negative and positive controls respectively. Spinosad was 14 times more genotoxic than dillapiol, and the effect was found to be purely recombinogenic. However, more studies on the potential risks of insecticides such as spinosad and dillapiol are necessary, based on other experimental models and methodologies, to ensure safe use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.