Abstract
The aim of this study was to develop a method to silence a very specific set of cells in a spatially and temporally refined manner. Here, an approach is presented that combines the use of a transgenic mouse line, expressing cre recombinase under a nestin promoter, with lentiviral delivery of a floxed, ivermectin (IVM)-gated chloride channel construct to the dentate gyrus. This approach was used to express an IVM-sensitive chloride channel in newly born granule cells in adult mouse brains, and its ability to silence neuronal activity was tested by analyzing the effect on immediate early gene expression in vitro in cre-transgenic primary neuronal cultures. IVM treatment of cells expressing the chloride channel prevented gabazine-induced expression of the immediate early gene product EGR1, while cells expressing a control inactive channel or no channel retained their EGR1 response. Thus, a genetic strategy is presented for targeting a specific neurogenic niche for transgene expression in the adult mouse brain, and proof of principle is shown that it can be used in vitro as a method for silencing neuronal activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.