Abstract

IntroductionWhile COVID-19 pandemic continues to spread worldwide, researchers have linked patterns of traits to poor disease outcomes. Risk factors for COVID-19 include asthma, elderly age, being pregnant, having any underlying diseases such as cardiovascular disease, diabetes, obesity, and experiencing lifelong systemic racism. Recently, connections to certain genes have also been found, although the susceptibility has not yet been established. We aimed to investigate the available evidence for the genetic susceptibility to COVID-19.MethodsThis study was a systematic review of current evidence to investigate the genetic susceptibility of COVID-19. By systematic search and utilizing the keywords in the online databases including Scopus, PubMed, Web of Science, and Science Direct, we retrieved all the related papers and reports published in English from December 2019 to September 2020.ResultsAccording to the findings, COVID-19 uses the angiotensin-converting enzyme 2 (ACE2) receptor for cell entry. Previous studies have shown that people with ACE2 polymorphism who have type 2 transmembrane serine proteases (TMPRSS2) are at high risk of SARS-CoV-2 infection. Also, two studies have shown that males are more likely to become infected with SARS-CoV-2 than females. Besides, research has also shown that patients possessing HLA-B*15:03 genotype may become immune to the infection.ConclusionCombing through the genome, several genes related to immune system’s response were related to the severity and susceptibility to the COVID-19. In conclusion, a correlation was found between the ACE2 levels and the susceptibility to SARS-CoV-2 infection.

Highlights

  • While COVID-19 pandemic continues to spread worldwide, researchers have linked patterns of traits to poor disease outcomes

  • Previous studies have shown that people with angiotensin-converting enzyme 2 (ACE2) polymorphism who have type 2 transmembrane serine proteases (TMPRSS2) are at high risk of SARS-CoV-2 infection

  • A correlation was found between the ACE2 levels and the susceptibility to SARS-CoV-2 infection

Read more

Summary

Introduction

While COVID-19 pandemic continues to spread worldwide, researchers have linked patterns of traits to poor disease outcomes. SARS-CoV-2 utilizes molecules to enter the cells, such as angiotensin-converting enzyme 2 (ACE2) to attach to the receptor-binding domain (RBD) and type 2 transmembrane serine proteases (TMPRSS2) to cleave the spike (S) protein [15,16,17]. SARS-CoV-2 S-protein cleavage by TMPRSS2 initiates viral entry and helps. SARS-CoV-2 S-protein cleavage by TMPRSS2 is responsible for immune escape besides initiating the viral entry [15]. Cell entry is reinforced in the presence of TMPRSS2 in ACE2-positive cells by cleaving the viral Spike protein, which can result in its activation for membrane fusion [23,24,25]. There are reports that genetic differences can cause certain races and populations to be more affected by this virus, and they might contribute to gender-specific differences [26]. To make matters even more important, the differences in severity observed in children compared to older adults may be in parts due to the different expressions of genetic components, such as TMPRSS2 [29]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.