Abstract

Progenies of a Design II [Comstock and Robinson (1948)] using random S 1 lines from an exotic population of corn (Zea mays L.) were evaluated in a randomized incomplete block design with two replications at two plant-population densities (1 7,222 plants/ha and 68,888 plants/ha) in 1970 and 1971, at Lincoln, Nebraska. Five traits were studied i.e. grain weight, number of ears, days to flower, plant height and ear height.Under both densities the estimates of additive genetic variance were much larger than those of dominance genetic variance for all traits. The ratio of dominance to additive genetic variance estimates was less than 0.5 suggesting that for the majority of loci controlling the traits, partial to complete dominance is likely.The estimates of additive genetic x year interaction variance were high and significantly different from zero under both densities, indicating that estimates of additive genetic variance in this population obtained from experiments conducted in only one year may be seriously biased. The estimates of dominance genetic x year interaction variance were not significant and most of them were negative.Under both densities high genetic inter-relationships were indicated between grain weight and number of ears, days to flower and plant height, days to flower and ear height, and plant height and ear height.Even though there was a large difference between the two densities used in the study, the differences between the estimates of genetic parameters were not significant in all cases.The sample size of S 1 plants representing each S0 parent in the crossing nursery used in the present study (11.75) caused a small upward bias in the estimates of additive genetic variance, but it caused an upward bias in the estimates of dominance genetic variance of 6-7% of the total genetic variance.It is suggested that a trait such as grain weight should be expressed on a unit area basis when genetic parameters (except for correlation and the ratio between two values) obtained from experiments with different plant-population densities are to be compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.