Abstract

Treatment-related leukemias are one of the most devastating late complications of cancer therapy. Patients with rare cancer predisposition syndromes including neurofibromatosis type 1 and inherited p53 mutations are at an increased risk for this complication. Other patients may have increased susceptibility because they possess common genetic polymorphisms in drug-metabolizing enzymes that result in impaired detoxification of chemotherapy or inefficient repair of drug-induced genetic damage. We review studies that have identified a potential role for polymorphisms in the genes encoding the glutathione-S-transferases (GSTs), NAD(P) H: quinone oxidoreductase, myeloperoxidase, N-acetyltransferase (NATs), cytochrome P450 (CYP) 1A1 and 3A4, methylenetetrahydrofolate reductase (MTHFR), cystathionine-beta-synthase (CBS), and others in the etiology of primary or secondary acute leukemias, and therapy-related complications. The identification of high risk polymorphisms and use of pharmacogenetically-guided therapies holds promise to improve the outcome of cancer therapy and reduce the risk of treatment-related leukemias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.