Abstract

BackgroundMalaria is a major public health problem in the China–Myanmar border region. The genetic structure of malaria parasite may affect its transmission model and control strategies. The present study was to analyse genetic diversity of Plasmodium falciparum by merozoite surface proteins 1 and 2 (MSP1 and MSP2) and to determine the multiplicity of infection in clinical isolates in the China–Myanmar border region.MethodsVenous blood samples (172) and filter paper blood spots (70) of P. falciparum isolates were collected from the patients of the China–Myanmar border region from 2006 to 2011. The genomic DNA was extracted, and the msp1 and msp2 genes were genotyped by nested PCR using allele-specific primers for P. falciparum.ResultsA total of 215 P. falciparum clinical isolates were genotyped at the msp1 (201) and msp2 (204), respectively. For the msp1 gene, MAD20 family was dominant (53.49%), followed by the K1 family (44.65%), and the RO33 family (12.56%). For the msp2 gene, the most frequent allele was the FC27 family (80.93%), followed by the 3D7 family (75.81%). The total multiplicity of infection (MOI) of msp1 and msp2 was 1.76 and 2.21, with a prevalence of 64.19% and 72.09%, respectively. A significant positive correlation between the MOI and parasite density was found in the msp1 gene of P. falciparum. Sequence analysis revealed 38 different alleles of msp1 (14 K1, 23 MAD20, and 1 RO33) and 52 different alleles of msp2 (37 3D7 and 15 FC27).ConclusionThe present study showed the genetic polymorphisms with diverse allele types of msp1 and msp2 as well as the high MOI of P. falciparum clinical isolates in the China–Myanmar border region.

Highlights

  • Malaria is a major public health problem in the China–Myanmar border region

  • Based on the sequence analysis of P. falciparum isolates from different endemic areas, the msp1 gene is divided into two allelic types of MAD20 and K1, whereas the highly polymorphic block 2 is represented by three allelic types of K1, RO33 and MAD20 [11]

  • Due to the dramatic changes of the malaria situation in Yunnan Province, China, in recent years, this study aimed to investigate the genetic diversity of the P. falciparum populations along the China–Myanmar border region using two polymorphic markers merozoite surface protein 1 (MSP1) and merozoite surface protein 2 (MSP2)

Read more

Summary

Introduction

Malaria is a major public health problem in the China–Myanmar border region. The genetic structure of malaria parasite may affect its transmission model and control strategies. The present study was to analyse genetic diversity of Plasmodium falciparum by merozoite surface proteins 1 and 2 (MSP1 and MSP2) and to determine the multiplicity of infection in clinical isolates in the China–Myanmar border region. The msp gene is grouped into two different allelic types of 3D7 and FC27 [12,13,14] These two polymorphic markers have been used to study the P. falciparum population in northeastern Myanmar, suggesting a highly diverse parasite population [15]. Due to the dramatic changes of the malaria situation in Yunnan Province, China, in recent years, this study aimed to investigate the genetic diversity of the P. falciparum populations along the China–Myanmar border region using two polymorphic markers MSP1 and MSP2

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.