Abstract
ABSTRACT: Knowledge on the variability and heritability of agronomic characters of interest aid the selection of superior materials. Thus, the objective of this study was to evaluate the genetic parameters of agronomic traits in castor bean plant lineages and to quantify the genetic correlations between them. The study was performed in the experimental area of the Federal University of the Recôncavo da Bahia, Cruz das Almas, Bahia. Seed oil content, vegetative cycle, plant height, and the number and weight of seeds per plant were evaluated in 47 lineages of castor bean seedlings. The coefficient of genetic variation was higher for weight of seeds per plant, revealing greater variability. The broad-sense heritability of individual plots presented a higher value for oil content and a lower value for seed number per plant. Selection precision was moderate for plant height, number and weight of seeds per plant, high for vegetative cycle, and very high for oil content. The genetic parameters allowed superior genotypes to be ranked and selected. Positive correlations between vegetative cycle and plant height, associated with negative correlations for number and weight of seeds, and oil content, allow significant gains for crop productivity.
Highlights
Castor bean plant (Ricinus communis L.) is cultivated in small and medium farms, and in large plantations
In view of the above, the objective of this study was to evaluate the genetic parameters of agronomic characters in castor bean plant lineages and to quantify the genetic correlations between them
The study population included individuals derived from selection at 21% selection pressure in a generation with high homozygosity, which was conducted by the single seed descent (SSD) method
Summary
Castor bean plant (Ricinus communis L.) is cultivated in small and medium farms, and in large plantations. It is a non-edible oilseed plant with high oil production capacity, with more than 700 industrial uses, such as the manufacture of paints, varnishes, synthetic fibers, lubricants, solvents, nylon, hydraulic fluids, special greases, cosmetics, and prostheses, and is the only vegetable oil soluble in alcohol (COSTA et al, 2005; BAJAY et al, 2009; JEONG AND PARK, 2009; FALASCA et al, 2012). To meet the growing need for seeds, genetic improvement of the crop and the creation of new genotypes is the most economical way to achieve the required increase in production of this oilseed (OLIVEIRA JUNIOR & ZANOTTO, 2008; DAPKE et al, 2016; SALIHU et al, 2017). The evaluation of genetic parameters, such as coefficient of genetic variance and heritability, are important tools for Approved 12.04.18 Returned CR-2018-0547.R1 by the author
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.