Abstract

BackgroundLow serum magnesium levels have been associated with multiple chronic diseases. The regulation of serum magnesium homeostasis is not well understood. A previous genome-wide association study (GWAS) of European ancestry (EA) populations identified nine loci for serum magnesium. No such study has been conducted in African-Americans, nor has there been an evaluation of the interaction of magnesium-associated SNPs with environmental factors. The goals of this study were to identify genetic loci associated with serum magnesium in an African-American (AA) population using both genome-wide and candidate region interrogation approaches and to evaluate gene-environment interaction for the magnesium-associated variants in both EA and AA populations. We conducted a GWAS of serum magnesium in 2737 AA participants of the Atherosclerosis Risk in Communities (ARIC) Study and interrogated the regions of the nine published candidate loci in these results. Literature search identified the influence of progesterone on MUC1 expression and insulin on TRPM6 expression.ResultsThe GWAS approach in African-American participants identified a locus near MUC1 as genome-wide significant (rs2974937, beta = −0.013, p = 6.1x10−9). The candidate region interrogation approach identified two of the nine loci previously discovered in EA populations as containing SNPs that were significantly associated in African-American participants (SHROOM3 and TRPM6). The index variants at these three loci together explained 2.8 % of the variance in serum magnesium concentration in ARIC African-American participants. On the test of gene-environment interaction in ARIC EA participants, the index variant at MUC1 had 2.5 times stronger association in postmenopausal women with progestin use (beta = −0.028, p = 7.3x10−5) than in those without any hormone use (beta = −0.011, p = 7.0x10−8, p for interaction 0.03). At TRPM6, the index variant had 1.6 times stronger association in those with lower fasting insulin levels (<80pmol/L: beta = −0.013, p = 1.6x10−7; ≥80pmol/L: beta = −0.008, p = 1.8x10−2, p for interaction 0.03).ConclusionsWe identified three loci that explained 2.8 % of the variance in serum magnesium concentration in ARIC African-American participants. Following-up on functional studies of gene expression identified gene-environment interactions between progestin use and MUC1 and between insulin and TRPM6 on serum magnesium concentration in ARIC European-American participants. These results extend our understanding of the metabolism of serum magnesium.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-015-0219-7) contains supplementary material, which is available to authorized users.

Highlights

  • Low serum magnesium levels have been associated with multiple chronic diseases

  • A genome-wide association study (GWAS) in populations of European ancestry (EA) previously identified nine loci associated with serum magnesium levels [6], and these loci explained

  • The goals of the present study were to 1) identify genomic loci associated with serum magnesium in AA individuals using both genome-wide and candidate region interrogation approaches and 2) follow up on the GWAS findings from EA populations, to identify environmental factors that may modify the association between genetic loci and serum magnesium in both EA and AA populations

Read more

Summary

Introduction

Low serum magnesium levels have been associated with multiple chronic diseases. The regulation of serum magnesium homeostasis is not well understood. A previous genome-wide association study (GWAS) of European ancestry (EA) populations identified nine loci for serum magnesium. The goals of this study were to identify genetic loci associated with serum magnesium in an African-American (AA) population using both genome-wide and candidate region interrogation approaches and to evaluate gene-environment interaction for the magnesium-associated variants in both EA and AA populations. A genome-wide association study (GWAS) in populations of European ancestry (EA) previously identified nine loci associated with serum magnesium levels [6], and these loci explained

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.