Abstract

The genetic linkage relationships of the human glycosphingolipid beta-galactosidases were determined using human--mouse somatic cell hybrids. A new method was devised for the estimation of human galactosylceramide, lactosylceramide, and GMI-ganglioside beta-galactosidase activities in the presence of their mouse counterparts, which takes advantage of the reproducible specific activity of lysosomal hydrolases under a given set of culture conditions and is based on differences in both pH optima and sensitivity to chloride ion. Human and mouse chromosomes were identified by their characteristic banding patterns obtained after quinacrine staining, and the optimum glycolipid beta-galactosidase activity was determined for three different substrates. A ratio was defined for each activity which was the specific activity at the human pH optimum divided by the specific activity at the mouse pH optimum. Linear regression analysis was used to test for concordant segregation between pH ratios for each enzyme and the frequency of occurrence of different human chromosomes in the man--mouse somatic hybrid clones. The results obtained from two independent series of hybrid clones indicated that human beta-galactosidase activities consistently segregated with human chromosome 12 in these somatic cell hybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.