Abstract

Thirty-three autosomal short tandem repeat (STR) markers were used to evaluate genetic heterogeneity and diversity in 525 golden retrievers (GRs). This breed was selected because of its popularity and artificial selection for conformation vs. performance phenotypes. Seven additional STRs were used to evaluate the highly polymorphic dog leukocyte antigen (DLA) class I and class II regions. From 3 to 13 alleles were found at each of the 33 loci (mean 7) and the average effective alleles (Ne) was 3.34. The observed heterozygosity was 0.65 and the expected heterozygosity was 0.68. The resulting fixation index was 0.035 indicating that the population was randomly breeding. We found that modern GRs retain 46% of genomic diversity present in all canids and 21/175 (12%) and 20/90 (22%) of the known DLA class I and class II haplotypes, respectively. Selection for performance or conformation led to a narrowing of genomic and DLA diversity with conformation having a greater effect than performance. A comparison was made between coefficient of inbreeding (COI) determined from 10 or 12 generation pedigrees and DNA based internal relatedness values. A weak but significant correlation was observed between IR score and 10 or 12 generation COI (r = 0.38, p<0.0001 and r = 0.40, p<0.0001, respectively). IR values were higher in conformation than performance lines but only significant at p = 0.17. This was supported by 10 and 12 generation COI values that were significantly (p<0.0001) higher in conformation than performance lines. We demonstrate herein that a low density of STR markers can be utilized to study the genetic makeup of GRs.

Highlights

  • Purebred dogs originate from a highly select group of founders that are pre-defined by a homogenous standard

  • This study demonstrated how DNA analysis based on 33 autosomal short tandem repeat (STR) loci markers can evaluate genetic heterogeneity and diversity in a pure breed such as the golden retrievers (GRs)

  • We found the 525 GRs tested to be heterogenous by standard genetic assessment and to segregate as a single population by principal coordinate analysis (PCoA)

Read more

Summary

Introduction

Purebred dogs originate from a highly select group of founders that are pre-defined by a homogenous standard. Once a breed is registered, further gene flow is prohibited ensuring the purity and maintenance of the breed. To continue to achieve a desired phenotype, many purebred dog breeders utilize line-breeding and may overuse popular sires [1]. The desire is to maintain a homogenous phenotype, a dog breed can often vary over.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.