Abstract

Classification of intrusion attacks and normal network traffic is a challenging and critical problem in pattern recognition and network security. In this paper, we present a novel intrusion detection approach to extract both accurate and interpretable fuzzy IF–THEN rules from network traffic data for classification. The proposed fuzzy rule-based system is evolved from an agent-based evolutionary framework and multi-objective optimization. In addition, the proposed system can also act as a genetic feature selection wrapper to search for an optimal feature subset for dimensionality reduction. To evaluate the classification and feature selection performance of our approach, it is compared with some well-known classifiers as well as feature selection filters and wrappers. The extensive experimental results on the KDD-Cup99 intrusion detection benchmark data set demonstrate that the proposed approach produces interpretable fuzzy systems, and outperforms other classifiers and wrappers by providing the highest detection accuracy for intrusion attacks and low false alarm rate for normal network traffic with minimized number of features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.