Abstract

The larva of Taeniidae species can infect a wide range of mammals, causing major public health and food safety hazards worldwide. The Qinghai-Tibet Plateau (QTP), a biodiversity hotspot, is home to many species of rodents, which act as the critical intermediate hosts of many Taeniidae species. In this study, we identified two new larvae of Taenia spp., named T. caixuepengi and T. tianguangfui, collected from the plateau pika (Ochotona curzoniae) and the Qinghai vole (Neodon fuscus), respectively, in QTP, and their mitochondrial genomes were sequenced and annotated. Phylogenetic trees based on the mitochondrial genome showed that T. caixuepengi has the closest genetic relationship with T. pisiformis, while T. tianguangfui was contained in a monophyletic group with T. crassiceps, T. twitchelli, and T. martis. Biogeographic scenarios analysis based on split time speculated that the speciation of T. caixuepengi (∼5.49 Mya) is due to host switching caused by the evolution of its intermediate host. Although the reason for T. tianguangfui (∼13.11 Mya) speciation is not clear, the analysis suggests that it should be infective to a variety of other rodents following the evolutionary divergence time of its intermediate host and the range of intermediate hosts of its genetically close species. This study confirms the species diversity of Taeniidae in the QTP, and speculates that the uplift of the QTP has not only a profound impact on the biodiversity of plants and animals, but also that of parasites.

Highlights

  • The most recent molecular phylogenetic analysis has suggested that the family Taeniidae (Eucestoda: Cyclophyllidea) should be composed of four genera: Taenia, Echinococcus, Hydatigera, and Versteria (Nakao et al, 2013)

  • Taenia was constituted by about 42 valid species and three subspecies based on morphology (Hoberg et al, 2000; Hoberg, 2006; Nakao et al, 2013)

  • Cysticerci from pikas were the same new species, named T. caixuepengi larva, the cysticerci from voles were morphologically different from T. caixuepengi larva and were named T. tianguangfui larva

Read more

Summary

Introduction

The most recent molecular phylogenetic analysis has suggested that the family Taeniidae (Eucestoda: Cyclophyllidea) should be composed of four genera: Taenia, Echinococcus, Hydatigera, and Versteria (Nakao et al, 2013). Most adult tapeworms parasitize the intestines of carnivores while the intermediate hosts harbor the larva stage that develops from ingested eggs, causing severe health effects (Jia et al, 2012; Nakao et al, 2013; Lymbery, 2017; Deplazes et al, 2019). As for Echinococcus, a total of 16 species and 13 subspecies were described based on morphology, but most of these taxa were subsequently invalidated following widespread application of molecular genetic methods (Lymbery, 2017). It is difficult to distinguish taeniid species according to their morphological characteristics at different stages of their life cycle, even by specialists (Flisser et al, 2005; Mathis and Deplazes, 2006; Jia et al, 2012). Morphological characteristics are substantially influenced by the different intermediate host origins (Lymbery, 1998)

Methods
Results
Conclusion

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call