Abstract

Memory formation involves dynamic interactions among many brain structures and their linking pathways. The noradrenaline (NA) system in the CNS plays an important role in a wide variety of neurological and psychological functions. Alteration in the NA system is implicated in the pathological states of some neuropsychiatric disorders. Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme for the biosynthesis of catecholamines. The regulatory mechanism of the TH reaction is generally considered to play a key role in controlling the catecholaminergic actions. Mice heterozygous for the mutation of the gene encoding TH exhibit the reduced TH activity in tissues. These mice have a moderate reduction in NA accumulation and release in brain regions. The mutant mice exhibit deficits in the water-finding task associated with latent learning performance, suggesting the impairment in memory formation. Spatial learning performance measured by the water maze task is normal in the mutants. However, they display deficits in long-term memory formation of conditioned learning evaluated with three distinct behavioral paradigms, including active avoidance, cued fear conditioning, and conditioned taste aversion, without affecting short-term memory. These memory deficits are restored by the drug-induced stimulation of NA activity at the postconditioning phase. Analysis of the mutant mice indicates that the central NA system is essential for the consolidation process in long-term memory of conditioned learning. The process appears to be implicated in the NA activity in the cerebral cortex and/or amygdaloid complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.