Abstract

BackgroundUnderstanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras.MethodsFive molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed.Results and conclusionA high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

Highlights

  • Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, in vaccine development

  • In 2011, a total of 7,612 cases of malaria were reported in the country, of which 92.1% were due to Plasmodium vivax and 7.9% were due to P. falciparum or mixed infections by both species

  • Malaria transmission in Honduras has decreased notoriously during the last 10–12 years, and is concentrated in six Provinces located along the Northeastern and Atlantic Regions [23]

Read more

Summary

Introduction

Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. Honduras reports the greater burden of malaria among all seven countries in the Central American region and has the highest proportion of Plasmodium falciparum cases. Despite the dramatic decrease in clinical cases occurred during the last decade, malaria remains a serious public health problem in Honduras. In 2011, a total of 7,612 cases of malaria were reported in the country, of which 92.1% were due to Plasmodium vivax and 7.9% were due to P. falciparum or mixed infections by both species (based on data from Honduran Health Ministry, 2012). The development of an effective malaria vaccine could be the most impactful strategy for reducing the burden of malaria cases [3]

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.