Abstract

Molecular techniques have been applied to study the evolution of wine-associated lactic acid bacteria from red wines produced in the absence and presence of antimicrobial phenolic extracts, eucalyptus leaves and almond skins, and to genetically characterize representative Oenococcus oeni strains. Monitoring microbial populations by PCR-DGGE targeting the rpoB gene revealed that O. oeni was, as expected, the species responsible for malolactic fermentation (MLF). Representative strains from both extract-treated and not-treated wines were isolated and all were identified as O. oeni species, by 16S rRNA sequencing. Typing of isolated O. oeni strains based on the mutation of the rpoB gene suggested a more favorable adaptation of L strains (n = 63) than H strains (n = 3) to MLF. Moreover, PFGE analysis of the isolated O. oeni strains revealed 27 different genetic profiles, which indicates a rich biodiversity of indigenous O. oeni species in the winery. Finally, a higher number of genetic markers were shown in the genome of strains from control wines than strains from wines elaborated with phenolic extracts. These results provide a basis for further investigation of the molecular and evolutionary mechanisms leading to the prevalence of O. oeni in wines treated with polyphenols as inhibitor compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.