Abstract

BackgroundDiscovering a genome-wide set of avocado (Persea americana Mill.) single nucleotide polymorphisms and characterizing the diversity of germplasm collection is a powerful tool for breeding. However, discovery is a costly process, due to loss of loci that are proven to be non-informative when genotyping the germplasm.ResultsOur study on a collection of 100 accessions comprised the three race types, Guatemalan, Mexican, and West Indian. To increase the chances of discovering polymorphic loci, three pools of genomic DNA, one from each race, were sequenced and the reads were aligned to a reference transcriptome. In total, 507,917 polymorphic loci were identified in the entire collection. Of these, 345,617 were observed in all three pools, 117,692 in two pools, 44,552 in one of the pools, and only 56 (0.0001%) were homozygous in the three pools but for different alleles. The polymorphic loci were validated using 192 randomly selected SNPs by genotyping the accessions within each pool. The sensitivity of polymorphic locus prediction ranged from 0.77 to 0.94. The correlation between the allele frequency estimated from the pooled sequences and actual allele frequency from genotype calling of individual accessions was r = 0.8. A subset of 109 SNPs were then used to evaluate the genetic relationships among avocado accessions and the genetic diversity of the collection. The three races were distinctly clustered by projecting the genetic variation on a PCA plot. As expected, by estimating the kinship coefficient for all the accessions, many of the cultivars from the California breeding program were closely related to each other, especially, the Hass-like ones. The green-skin avocados, e.g., ‘Bacon’, ‘Zutano’, ‘Ettinger’ and ‘Fuerte’ were also closely related to each other.ConclusionsA framework for SNP discovery and genetically characterizing of a breeder‘s accessions was described. Sequencing pools of gDNA is a cost-effective approach to create a genome-wide stock of polymorphic loci for a breeding program. Reassessing the botanical and the genetic knowledge about the germplasm accessions is valuable for future breeding. Kinship analysis may be used as a first step in finding a parental candidates in a parentage analyses.

Highlights

  • Discovering a genome-wide set of avocado (Persea americana Mill.) single nucleotide polymorphisms and characterizing the diversity of germplasm collection is a powerful tool for breeding

  • We suggest a framework for single-nucleotide polymorphisms (SNPs) discovery and genetic characterization of a germplasm collection based on sequencing of genomic DNA pools

  • For SNP discovery, genomic DNA (gDNA) is favored over mRNA to avoid false calls that might be a result of allelic specific expression

Read more

Summary

Introduction

Discovering a genome-wide set of avocado (Persea americana Mill.) single nucleotide polymorphisms and characterizing the diversity of germplasm collection is a powerful tool for breeding. In light of the high-throughput technologies that have been developed in the last decade such as microarray, next-generation sequencing (NGS), and successively genotype-by-sequencing (GBS), single-nucleotide polymorphisms (SNPs) have emerged as a useful genetic marker tool to estimate variability on a genome-wide scale [9,10,11,12]. Exome-wide SNP discovery can reduce the genome’s complexity and increase the sequence-read coverage [15]. This approach increases the chances of finding markers close to causative trait loci. Estimating the allele frequency directly from expression data might lead to a biased result or even false loss-of-heterozygosity (LOH) deductions due to allele-specific expression

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.