Abstract
The analysis of Amplified Fragment Length Polymorphism (AFLP) was used to estimate genetic diversity in common bean (Phaseolus vulgaris L.) variety Hwachia and in 34 NaN3-induced mutants and 11 commercial varieties introduced from China. Eight primer combinations generated 516 DNA fragments of the tested mutants and introduced varieties, of which 448 fragments were polymorphic. The calculated Jaccard similarity coefficients based on AFLP data ranged from 0.47 to 0.84. The molecular profiles obtained from eight AFLP primer pairs indicated a high genetic diversity among Hwachia, NaN3-induced mutants and introduced varieties. The extent of genetic variation was slightly higher between Hwachia and NaN3-induced mutants than between Hwachia and introduced commercial varieties. These results, supported by cluster analysis, suggest that NaN3-induced mutagenesis effectively broadens the genetic diversity of common bean varieties. Some of the produced mutants could be useful as sources of variation to develop new improved common bean varieties.
Highlights
Common bean (Phaseolus vulgaris L.) is a morphologically diverse grain legume, with large detectable variations for traits related to growth habit, pigmentation, pods and seeds and others (Singh 2001, Coan et al 2010)
The amplified fragment length polymorphism (AFLP) technique was used to assess the extent of diversity among the NaN3induced mutants and the commercial varieties introduced from China
The genomic DNA collected from wild type variety Hwachia and its 34 NaN3-induced mutants and 11 commercial varieties introduced from China were compared by Amplified Fragment Length Polymorphism (AFLP) analysis
Summary
Common bean (Phaseolus vulgaris L.) is a morphologically diverse grain legume, with large detectable variations for traits related to growth habit, pigmentation, pods and seeds and others (Singh 2001, Coan et al 2010). A chemical mutagenesis program of the common bean landrace Hwachia, which is very popular in central Taiwan was implemented, and many NaN3-induced mutants with differing seed traits were produced (Jeng et al 2010). The extent of genetic diversity among these mutants and other introduced common bean varieties has not been determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.