Abstract

We used the mitochondria DNA COI (cytochrome c oxidase subunit I) sequence as a genetic marker to analyze the population genetic structure of two species of freshwater copepods, Neodiaptomus schmackeri (Poppe and Richard, 1892) and Mongolodiaptomus birulai (Rylov, 1922) from Taiwan. Four populations with 51 individuals of N. schmackeri and five populations with 65 individuals of M. birulai were included. We compared the nucleotide sequences of a 635-bp fragment of the COI gene of N. schmackeri and a 655-bp fragment of the COI gene of M. birulai, and eight and 14 unique haplotypes were recorded, respectively. Tseng-Wen reservoir and Wu-San-Tao reservoir are linked by a channel, and the gene flow between them was unrestricted (Fst = 0.058; Nm = 4.04; Fst, population differentiation parameter; Nm, the number of succesfull migrants per generation); the gene flow between all other populations of both species was restricted (Fst = 0.4–0.99; Nm = 0–0.37). Based on the COI gene diversification pattern, we suggest that most populations of N. schmackeri and M. birulai are isolated from each other. According to the neighbor-joining tree and the minimum spanning network (MSN), the species have similar metapopulation genetic structures. Genetic distance was not found to be correlated with geographical distance. The genetic diversification pattern was not shown to be comparable with geographical isolation owing to long-distance separation. The genetic structure of the present populations may result from serial extinction and redistribution of the populations formed in each reservoir relative to time. Human activity in the reservoirs with regards to water resource management and the fishery industry also exerts an effect on population redistribution.

Highlights

  • Population genetics describes a population that is not evolving as in Hardy–Weinberg equilibrium.A Hardy–Weinberg population must be of a very large population size, with individuals not isolated from each other, without net mutation, with no natural selection acting upon the population, and the mating must be random pairing [1,2]

  • After intense collection of samples, we found that most of the reservoir was dominated by M. birulai, while in some places, both species coexisted, with minor populations of N. schmackeri

  • The aim of this study is to investigate the biodiversity of freshwater copepods at the genetic level

Read more

Summary

Introduction

A Hardy–Weinberg population must be of a very large population size, with individuals not isolated from each other, without net mutation, with no natural selection acting upon the population, and the mating must be random pairing [1,2]. Genetics predicts high dispersal rates and high levels of gene flow, preventing local populations from differentiating into new species. These populations approach the Hardy–Weinberg equilibrium state. Levins [3] developed the first metapopulation model as a set of local populations connected by migrating individuals. The metapopulation concept is derived from the influence of area and isolation on the colonization and extinction of each subpopulation [4]. Subpopulations usually inhabit an isolated habitat with patches of resources, and the degree of isolation may vary depending on the distance between patches

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.