Abstract

Electrophoretic variability was examined in six species of Layia (Compositae), native to California, which have previously been studied by Clausen, Keck, and Hiesey, and are regarded as a classic example of geographic speciation in plants. The study was carried out to test the hypothesis that the extent of divergence in structural genes coding enzymes is concordant with divergence in morphological characteristics, ecological traits, and reproductive isolation. Eleven enzymes specified by 17 loci were analyzed. The genetic identity values were consistent with those expected on the model that the species diverged gradually as they adapted to geographically separate habitats. Thus, the values between the three species complexes proposed by Clausen, Keck, and Hiesey (L. chrysanthemoides/L. fremontii; L. jonesii/L. leucopappa/L. munzii; L. platyglossa) were substantially lower than the values between species within the complexes. The results provide an important contrast to the very high genetic identities between species which originated rapidly from their progenitors. The electrophoretic results also provided evidence that the cytosolic isozyme of phosphoglucomutase and the cytosolic NADP-dependent isocitrate dehydrogenase in the six species are coded by duplicate genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.