Abstract

Tumor necrosis factor receptor II (TNFRII) is one of the TNF receptor superfamily members and our recent pathological studies show that TNFRII is deficient in the brains of Alzheimer's disease (AD). However, the mechanisms of TNFRII in AD pathogenesis remain unclear. In the present study, by using the gene-targeting approach to delete TNFRII in AD transgenic mouse model, we found that, in the brain of APP23 mice with TNFRII deletion (APP23/TNFRII(-/-)), AD-like pathology, i.e. plaque formation and microglial activation, occurs as early as 6 months of age. To test whether the increased levels of Aβ plaques was due to elevated Aβ, we measured Aβ and found that Aβ levels indeed were significantly increased at this age. Because β-secretase, BACE1, is critical enzyme for Aβ production, we have examined BACE1 and found that BACE1 is increased in both protein levels and enzymatic activity as early as 6 months of age; Having shown that BACE1 promoter region contains NF-κB binding sites, we found that cytoplasmic NF-κB was elevated and SUMO1 binding to IκBα was decreased. To further verify these findings, we have overexpressed TNFRII and identified that overexpressing TNFRII can reverse the findings from APP23/TNFRII(-/-) mice. Altogether, our results demonstrate novel roles of TNFRII in the regulation of Aβ production, suggesting a potential therapeutic strategy for AD by up-regulating TNFRII levels and elevating phosphorylated IκBα by SUMOylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.