Abstract

BackgroundOur recently reported doubled haploid (DH) induction lines e.g., Y3380 and Y3560 are allo-octoploid (AAAACCCC, 2n = 8× ≈ 76), which can induce the maternal parent to produce DH individuals. Whether this induction process is related to the production of aneuploid gametes form male parent and genetic characteristics of the male parent has not been reported yet.ResultsSomatic chromosome counts of DH inducer parents, female wax-less parent (W1A) and their F1 hybrid individuals revealed the reliability of flow cytometry analysis. Y3560 has normal chromosome behavior in metaphase I and anaphase I, but chromosome division was not synchronized in the tetrad period. Individual phenotypic identification and flow cytometric fluorescence measurement of F1 individual and parents revealed that DH individuals can be distinguished on the basis of waxiness trait. The results of phenotypic identification and flow cytometry can identify the homozygotes or heterozygotes of F1 generation individuals. The data of SNP genotyping coupled with phenotypic waxiness trait revealed that the genetic distance between W1A and F1 homozygotes were smaller as compared to their heterozygotes. It was found that compared with allo-octoploids, aneuploidy from allo-octoploid segregation did not significantly increase the DH induction rate, but reduced male infiltration rate and heterozygous site rate of induced F1 generation. The ploidy, SNP genotyping and flow cytometry results cumulatively shows that DH induction is attributed to the key genes regulation from the parents of Y3560 and Y3380, which significantly increase the induction efficiency as compared to ploidy.ConclusionBased on our findings, we hypothesize that genetic characteristics and aneuploidy play an important role in the induction of DH individuals in Brassca napus, and the induction process has been explored. It provides an important insight for us to locate and clone the genes that regulate the inducibility in the later stage.

Highlights

  • Our recently reported doubled haploid (DH) induction lines e.g., Y3380 and Y3560 are allo-octoploid (AAAACCCC, 2n = 8× ≈ 76), which can induce the maternal parent to produce DH individuals

  • Did the maternal haploids or DH have been obtained from the aneuploid pollen of the inducer male parent? In addition, do other polyploids have ability of induction? Does the ability of induction come from aneuploid gametes produced by octoploid or it is related to the functional genes? In order to address these questions, in this study, we used DH inducers parent P3–2 (2n = 4 × =38, AACC) [13], induction line Y3380 and Y3560, tetraploid, hexaploid and mixed-ploidy offspring of Y3380 and Y3560, and other polyploid were used as the pollen donors, and possible mechanism of DH induction was explored

  • It was found that functional genes regulate the inducibility of DH induction lines, and provided an experimental basis for the subsequent location of genes that regulate the inducibility of rapeseed

Read more

Summary

Introduction

Our recently reported doubled haploid (DH) induction lines e.g., Y3380 and Y3560 are allo-octoploid (AAAACCCC, 2n = 8× ≈ 76), which can induce the maternal parent to produce DH individuals. That’s why Y3380 and Y3560 were named as allo-octoploid DH inducer in Brassica napus [13, 14] These DH inducers are advantageous, as artificial doubling of haploid chromosome is not needed, and can directly induce the DH lines in a single step [13,14,15]. In order to address these questions, in this study, we used DH inducers parent P3–2 (2n = 4 × =38, AACC) [13], induction line Y3380 and Y3560, tetraploid, hexaploid and mixed-ploidy offspring of Y3380 and Y3560, and other polyploid (octoploid, hexaploid and triploids) were used as the pollen donors, and possible mechanism of DH induction was explored. The objective of this study was to establish a relationship between DH induction line with functional genes and ploidy, and how mechanism of DH induction provides a theoretical basis for our experiment

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.