Abstract

Simple SummaryThe relative growth of body components and metabolic traits relative to body weights are phenotypically characterized using joint allometric scaling models, and random regression models (RRMs) are constructed to map quantitative trait loci (QTLs) for allometries of body compositions and metabolic traits in broilers. Prior to statistically inferring the QTLs for the allometric scalings, the QTL candidates in RRMs are obtained by rapidly shrinking most of marker genetic effects to zero with the LASSO technique. Referred to as real joint allometric scaling models, statistical utility of the so-called LASSO-RRM mapping method is demonstrated by computer simulation analysis. Using the F2 population by crossing broiler × Fayoumi, we formulate optimal joint allometric scaling models of fat, shank weight (shank-w) and liver as well as thyroxine (T4) and glucose (GLC) to body weights. For body compositions, a total of 9 QTLs, including 4 additive and 5 dominant, were detected to control the allometric scalings of fat, shank-w and liver to body weights; while for metabolic traits, total 10 QTLs, were mapped to govern the allometries of T4 and GLC to body weights, among which 6 QTLs were of dominant genetic effect. The detected QTLs or highly linked markers can be used to regulate relative growths for meat quality traits to body weight in marker-assisted breeding of broilers.In animal breeding, body components and metabolic traits always fall behind body weights in genetic improvement, which leads to the decline in standards and qualities of animal products. Phenotypically, the relative growth of multiple body components and metabolic traits relative to body weights are characterized by using joint allometric scaling models, and then random regression models (RRMs) are constructed to map quantitative trait loci (QTLs) for relative grwoth allometries of body compositions and metabolic traits in chicken. Referred to as real joint allometric scaling models, statistical utility of the so-called LASSO-RRM mapping method is given a demonstration by computer simulation analysis. Using the F2 population by crossing broiler × Fayoumi, we formulated optimal joint allometric scaling models of fat, shank weight (shank-w) and liver as well as thyroxine (T4) and glucose (GLC) to body weights. For body compositions, a total of 9 QTLs, including 4 additive and 5 dominant QTLs, were detected to control the allometric scalings of fat, shank-w, and liver to body weights; while a total of 10 QTLs of which 6 were dominant, were mapped to govern the allometries of T4 and GLC to body weights. We characterized relative growths of body compositions and metabolic traits to body weights in broilers with joint allometric scaling models and detected QTLs for the allometry scalings of the relative growths by using RRMs. The identified QTLs, including their highly linked genetic markers, could be used to order relative growths of the body components or metabolic traits to body weights in marker-assisted breeding programs for improving the standard and quality of broiler meat products.

Highlights

  • In animal linkage analysis, the resource populations, genetically designed, did not satisfy strict back cross (BC) and F2 structures as used in plant breeding because of the difficulty to produce complete homozygous parents

  • For T4 (x1 ) and GLC (x2 ), respectively. This indicated that the relative growth of fat, shankw, liver, T4 and GLC were significantly associated with body weight among the phenotypic traits measured

  • Two additive and three dominant QTLs were detected for fat, of which the QTL on chromosome 27 fell on the microsatellite marker

Read more

Summary

Introduction

The resource populations, genetically designed, did not satisfy strict back cross (BC) and F2 structures as used in plant breeding because of the difficulty to produce complete homozygous parents. With pseudoBC or F2 population of multiple small families, the association of genetic markers with target traits has been statistically inferred by regressing phenotypic value variances to identity by descent at markers between pairwise siblings [1]. The regression method is inappropriate for multiple large families and populations with complex pedigree because of too many pairwise relatives. Linear mixed models (LMMs) have been used to map QTLs in structured populations with multiple families which take QTL (genetic marker) effects as fixed and consider random confounding effects caused by complex pedigree [4]. Instead of one test at a time, multi-marker mixed models have been jointly analyzed with stepwise regression analysis [10] and a LMM-LASSO [11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.