Abstract

Amaranthus tuberculatus is a problematic weed species in Midwest USA agricultural systems. Inhibitors of 4-hydroxyphenylpyruvate dioxygenase (HPPD) are an important chemistry for weed management in numerous cropping systems. Here, we characterize the genetic architecture underlying the HPPD-inhibitor resistance trait in an A. tuberculatus population (NEB). Dose-response studies of an F1 generation identified HPPD-inhibitor resistance as a dominant trait with a resistance factor of 15.0-21.1 based on dose required for 50% growth reduction. Segregation analysis in a pseudo-F2 generation determined the trait is moderately heritable (H2 = 0.556) and complex. Bulk segregant analysis and validation with molecular markers identified two quantitative trait loci (QTL), one on each of Scaffold 4 and 12. Resistance to HPPD inhibitors is a complex, largely dominant trait within the NEB population. Two large-effect QTL were identified controlling HPPD-inhibitor resistance in A. tuberculatus. This is the first QTL mapping study to characterize herbicide resistance in a weedy species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.