Abstract

Gram-negative bacteria are intrinsically resistant to many antibiotics due to their outer membrane barrier. Although the outer membrane has been studied for decades, there is much to uncover about the biology and permeability of this complex structure. Investigating synthetic genetic interactions can reveal a great deal of information about genetic function and pathway interconnectivity. Here, we performed synthetic genetic arrays (SGAs) in Escherichia coli by crossing a subset of gene deletion strains implicated in outer membrane permeability with nonessential gene and small RNA (sRNA) deletion collections. Some 155,400 double-deletion strains were grown on rich microbiological medium with and without subinhibitory concentrations of two antibiotics excluded by the outer membrane, vancomycin and rifampin, to probe both genetic interactions and permeability. The genetic interactions of interest were synthetic sick or lethal (SSL) gene deletions that were detrimental to the cell in combination but had a negligible impact on viability individually. On average, there were ∼30, ∼36, and ∼40 SSL interactions per gene under no-drug, rifampin, and vancomycin conditions, respectively; however, many of these involved frequent interactors. Our data sets have been compiled into an interactive database called the Outer Membrane Interaction (OMI) Explorer, where genetic interactions can be searched, visualized across the genome, compared between conditions, and enriched for gene ontology (GO) terms. A set of SSL interactions revealed connectivity and permeability links between enterobacterial common antigen (ECA) and lipopolysaccharide (LPS) of the outer membrane. This data set provides a novel platform to generate hypotheses about outer membrane biology and permeability.IMPORTANCE Gram-negative bacteria are a major concern for public health, particularly due to the rise of antibiotic resistance. It is important to understand the biology and permeability of the outer membrane of these bacteria in order to increase the efficacy of antibiotics that have difficulty penetrating this structure. Here, we studied the genetic interactions of a subset of outer membrane-related gene deletions in the model Gram-negative bacterium E. coli We systematically combined these mutants with 3,985 nonessential gene and small RNA deletion mutations in the genome. We examined the viability of these double-deletion strains and probed their permeability characteristics using two antibiotics that have difficulty crossing the outer membrane barrier. An understanding of the genetic basis for outer membrane integrity can assist in the development of new antibiotics with favorable permeability properties and the discovery of compounds capable of increasing outer membrane permeability to enhance the activity of existing antibiotics.

Highlights

  • Gram-negative bacteria are intrinsically resistant to many antibiotics due to their outer membrane barrier

  • These crosses were performed in high throughput using standard synthetic genetic arrays (SGAs) procedures [18, 19, 21], whereby a query gene deletion strain was transferred to each gene and small RNA (sRNA) deletion strain using conjugation at a 1,536-colony density to generate double-deletion strains

  • Vancomycin and rifampin were chosen as they are both large-scaffold antibiotics with widely different physicalchemical properties that are precluded from entry into Gram-negative bacteria by the outer membrane [34, 35]

Read more

Summary

Introduction

Gram-negative bacteria are intrinsically resistant to many antibiotics due to their outer membrane barrier. We studied the genetic interactions of a subset of outer membrane-related gene deletions in the model Gram-negative bacterium E. coli We systematically combined these mutants with 3,985 nonessential gene and small RNA deletion mutations in the genome. SSL interactions tend to occur if both perturbations target genes in parallel or redundant pathways to abrogate a process that is essential for growth [22] Studying these interactions in high throughput using synthetic genetic arrays (SGAs) [17,18,19] can provide a wealth of complex information about genetic involvement in cellular pathways and cross talk between pathways, which can help characterize genes of unknown function. Interactions have previously been probed under different conditions such as DNA damage [28] and nutrient and temperature stressors [29]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.