Abstract

The bacterial diversity of sea ice from Kiel Bight obtained during the rare event of solid ice cover in spring 1996 was analysed by molecular genetic approaches using an improved double gradient denaturing gradient gel electrophoretic method (DG-DGGE) to separate 16S rDNA fragments of approximately 500 bp. The excellent separation of individual bands within these gradient gels allowed us to obtain sequence information and to allocate the phylogenetic position of representative bacteria from the sea ice. The band pattern of the gradient gels revealed a vertical stratification of the bacterial species distribution within the ice and the presence of characteristic bacteria for each layer. According to their 16S rDNA sequences, major bands of the gradient gels represented bacteria closely related to fermenting species of the genera Propionibacterium and Bacteroides and to anoxygenic phototrophic purple sulfur bacteria (Chromatiaceae). Their abundance in horizons of the inner ice core may indicate the existence of oxygen-deficient and anoxic zones or niches and possible primary production by anoxygenic photosynthesis within the investigated Baltic Sea sea ice. This is the first phylogenetic evidence of the presence, and most probably the development, of phototrophic purple sulfur bacteria in sea ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.