Abstract

BackgroundLentil is an important source of food not only locally but globally. The importance of this legume crop is highlighted in light of the transport of strategic food sources such as wheat, maize, and rice due to environmental challenges. So, the process of genetic improvement of this crop has become imperative.ResultsThe final results confirmed that the three lentil cultivars Giza 9 (G1), Giza 29 (G2), and Giza 51 (G3) were exhibited unparalleled superiority for all growth, germination, and other traits under study when exposed to the three doses of ethyl methane sulfonate (EMS) compared to the control. Moreover, the three doses of this mutagen exceeded on the control experiment and this superiority were most severe especially at the third dose. The higher limit of positive percentages values of induced mutagenesis in M2 lentil generation (the second mutant generation) was observed in all studied traits especially at the third dose of EMS (0.3). This fact confirmed the success of the genetic improvement process in all lentil traits mentioned above.ConclusionThe three lentil cultivars (Giza 9, Giza 29, and Giza 51) were recorded highly mean values of all studied in M2 generation for the three doses of EMS. The third dose of mutagen (0.3) was come in the first rank followed by the second dose (0.2) then the first dose in this regard.

Highlights

  • Lentil is an important source of food locally but globally

  • Mean performances In general, we note that the average data for the third dose of ethyl methane sulfonate (EMS) (0.3) was superior in all traits under study compared to the standard experiment and outperformed on the rest doses of EMS (0.1 and 0.2) for the three lentil genotypes

  • As well as this dose was the best and ideal level responsible for mutagenesis which gave positive results that reflect the desired genetic improvement process in the three lentil cultivars where this dose of EMS (0.3) was recorded 96.03% for Giza 51 followed by 95.47% for Giza 29 and followed by 93.14% for Giza 9, respectively

Read more

Summary

Introduction

Lentil is an important source of food locally but globally. The importance of this legume crop is highlighted in light of the transport of strategic food sources such as wheat, maize, and rice due to environmental challenges. Results confirmed that EMS was found to very impact and revealed high level of genetic improvement in maize plants higher than the rest mutagenesis for manufacturing useful mutants in M1 and M2 generations. Plant cells use two mechanisms to detoxify ROS, enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) and non-enzymatic low molecular weight antioxidants such as ascorbate, α-tocopherol, carotenoids, and glutathione (Mittler 2017). After all, it has been presented and clarified with some detail about the results of some scientists in the strategy of genetic improvement of lentil cultivars using different types of mutagens. It can be said that the aim of this investigation can be summarized as follows: 1) Genetic improvement and creation of beneficial mutations in lentil plants using different doses of EMS

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.