Abstract
Modern photovoltaic (PV) systems have received significant attention regarding fault detection and diagnosis (FDD) for enhancing their operation by boosting their dependability, availability, and necessary safety. As a result, the problem of FDD in grid-connected PV (GCPV) systems is discussed in this work. Tools for feature extraction and selection and fault classification are applied in the developed FDD approach to monitor the GCPV system under various operating conditions. This is addressed such that the genetic algorithm (GA) technique is used for selecting the best features and the artificial neural network (ANN) classifier is applied for fault diagnosis. Only the most important features are selected to be supplied to the ANN classifier. The classification performance is determined via different metrics for various GA-based ANN classifiers using data extracted from the healthy and faulty data of the GCPV system. A thorough analysis of 16 faults applied on the module is performed. In general terms, the faults observed in the system are classified under three categories: simple, multiple, and mixed. The obtained results confirm the feasibility and effectiveness with a low computation time of the proposed approach for fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.