Abstract

Abstract: Gold mineralization of the Daerae mine represents the first recognized example of the Jurassic gold mineralization in the Sangju area, Korea. It occurs as a single stage of quartz veins that fill fault fractures in Precambrian gneiss of the central‐northern Sobaegsan Massif. The mineralogical characteristics of quartz veins, such as the simple mineralogy and relatively gold‐rich (65–72 atomic % Au) nature of electrum, as well as the CO2–rich and low salinity nature of fluid inclusions, are consistent with the ‘mesothermal‐type’ gold deposits previously recognized in the Youngdong area (about 50 km southwest of the Sangju area). Ore fluids were evolved mainly through CO2 immiscibility at temperatures between about 250 and 325 C. Vein sulfides characteristically have negative sulfur isotopic values (–1.9 to +0.2 %), which have been very rarely reported in South Korea, and possibly indicate the derivation of sulfur from an ilmenite‐series granite melt. The calculated O and H isotopic compositions of hydrothermal fluids at Daerae (δ18Owater = +5.2 to +5.9 %; δDwater = –59 to –67 %) are very similar to those from the Youngdong area, and indicate the important role of magmatic water in gold mineralization.The 40Ar–39Ar age dating of a pure alteration sericite sample yields a high‐temperature plateau age of 188.3 0.1 Ma, indicating an early Jurassic age for the gold mineralization at Daerae. The lower temperature Ar‐Ar plateau defines an age of 158.4 2.0 Ma (middle Jurassic), interpreted as reset by a subsequent thermal effect after quartz vein formation. The younger plateau age is the same as the previously reported K‐Ar ages (145–171 Ma) for the other ‘mesothermal–type’ gold deposits in the Youngdong and Jungwon areas, Korea, which are too young in view of the new Jurassic Ar‐Ar plateau age (around 188 Ma).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.